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1. INTRODUCTION

1.1 Languages and Concurrency

Concurrency is an important factor in the behaviour and performance of modern
code: concurrent programs are difficult to design, write, reason about, debug, and
tune. Concurrency can significantly affect the meaning of virtually every other con-
struct in the language (beginning with the atomicity of assignment), and can affect
the ability to invoke libraries. Despite this, most popular programming languages
treat concurrency not as a language feature, but as a collection of external libraries
that are often under-specified.

Considerable attention has been given, after the fact, to the specification of
important concurrency libraries [Birrell et al. 1987; Gosling et al. 1996; Detlefs et al.
1998; Gurevich et al. 2000] to the point where one can usually determine what their
behaviour should be under any implementation. Yet, even when the concurrency
libraries are satisfactorily specified, the simple fact that they are libraries, and not
features of the language, has undesirable consequences.

Many features can be provided, in principle, either as language features or as
libraries: typical examples are memory management and exceptions. The advan-
tage of having such features “in the language” is that the compiler can analyze
them, and can therefore produce better code and warn programmers of potential
and actual problems. In particular, the compiler can check for syntactically embed-
ded invariants that would be difficult to extract from a collection of library calls.
Moreover, programmers can more reliably state their intentions through a clear
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syntax, and tools other than the compiler can more easily determine the program-
mers’ intentions. Domain Specific Languages [Ramming 1997; Kamin 1997] are an
extreme example of this linguistic approach: new ad-hoc languages are routinely
proposed not to replace general-purpose language, but to facilitate domain-specific
code analysis by the simple fact of expressing domain-related features as primitive
language constructs.

We believe that concurrency should be a language feature and a part of language
specifications. Serious attempts in this direction were made beginning in the 1970’s
with the concept of monitors [Hoare 1974] and the Occam language [INMOS Limited
1984] (based on Communicating Sequential Processes [Hoare 1985]). The general
notion of monitors has become very popular, particularly in its current object-
oriented form of threads and object-bound mutexes, but it has been provided at
most as a veneer of syntactic sugar for optionally locking objects on method calls.

Many things have changed in concurrency since monitors were introduced. Com-
munication has become more asynchronous, and concurrent computations have to
be “orchestrated” on a larger scale. The concern is not as much with the efficient
implementation and use of locks on a single processor or multiprocessor, but with
the ability to handle asynchronous events without unnecessarily blocking clients for
long periods, and without deadlocking. In other words, the focus is shifting from
shared-memory concurrency to message- or event-oriented concurrency.

These new requirements deserve programming constructs that can handle well
asynchronous communications and that are not shackled to the shared-memory ap-
proach. Despite the development of a large collection of design patterns [Lea 1999]
and of many concurrent languages [America 1989; Agha et al. 1993; Reppy 1992;
Pierce and Turner 2000; Philippsen 1995], only monitors have gained widespread
acceptance as programming constructs.

An interesting new linguistic approach has emerged recently with Fournet and
Gonthier’s join calculus [1996; 2002], a process calculus well-suited to direct imple-
mentation in a distributed setting. Other languages, such as JoCaml [Conchon and
Le Fessant 1999] and Funnel [Odersky 2000], combine similar ideas with the func-
tional programming model. Here we propose an adaptation of join calculus ideas
to an object-oriented language that has an existing threads-and-locks concurrency
model. Itzstein and Kearney [2001] have recently described very similar extensions
for Java.

1.2 Asynchronous Programming

Asynchronous events and message passing are increasingly used at all levels of
software systems. At the lowest level, device drivers have to respond promptly
to asynchronous device events, while being parsimonious on resource use. At the
Graphical User Interface level, code and programming models are notoriously com-
plex because of the asynchronous nature of user events; at the same time, users
hate being blocked unnecessarily. At the wide-area network level, e.g. in collabo-
rative applications, distributed workflow or web services, we are now experiencing
similar problems and complexity because of the asynchronous nature and latencies
of global communication.

In all these areas, we naturally find situations where there are many asynchronous
messages to be handled concurrently, and where many threads are used to handle
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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them. Threads are still an expensive resource on most systems. However, if we
can somewhat hide the use of messages and threads behind a language mechanism,
then many options become possible. A compiler may transform some patterns of
concurrency into state machines, optimize the use of queues, use lightweight threads
when possible, avoid forking threads when not necessary, and use thread pools. All
this is really possible only if one has a handle on the spectrum of “things that can
happen”: this handle can be given by a syntax for concurrent operations that can
both hide and enable multiple implementation techniques.

Therefore, we aim to promote abstractions for asynchronous programming that
are high-level, from the point of view of a programmer, and that enable low-level
optimizations, from the point of view of a compiler and run-time systems. We
propose an extension of the C] language with modern concurrency abstraction for
asynchronous programming. In tune with the musical spirit of C] and with the
“orchestration” of concurrent activities, we call this language Polyphonic C].1

1.3 C] and .NET

C] is a modern, type-safe, object-oriented programming language recently intro-
duced by Microsoft as part of Visual Studio.NET [ECMA 2001]. C] programs run
on top of the .NET Framework, which includes a multi-language execution engine
and a rich collection of class libraries.

The .NET execution engine provides a multi-threaded execution environment
with synchronization based on locks potentially associated with each heap-allocated
object. The C] language includes a lock statement, which obtains the mutex as-
sociated with a given object during the execution of a block. In addition, the
.NET libraries implement many traditional concurrency control primitives such as
semaphores, mutexes and reader/writer locks, as well as an asynchronous program-
ming model based on delegates.2 The .NET Framework also provides higher-level
infrastructure for building distributed applications and services, such as SOAP-
based messaging and remote method call.

The concurrency and distribution mechanisms of the .NET Framework are pow-
erful, but they are also undeniably complex. Quite apart from the bewildering
array of primitives that are more or less ‘baked in’ to the infrastructure, there is
something of a mismatch between the 1970s model of concurrency on a single ma-
chine (shared memory, threads, synchronization based on mutual exclusion) and
the asynchronous, message-based style that one uses for programming web-based
applications and services. C] therefore seems an ideal test-bed for our ideas on
language support for concurrency in mainstream languages.

2. POLYPHONIC C# LANGUAGE OVERVIEW

This section describes the syntax and semantics of the new constructs in Polyphonic
C] and then gives a more precise, though still informal, specification of the syntax.

1Polyphony is musical composition that uses simultaneous, largely independent, melodic parts,
lines, or voices (Encarta World English Dictionary, Microsoft Corporation, 2001).
2An instance of a delegate class encapsulates an object and a method on that object with a
particular signature. So a delegate is more than a C-style function pointer, but slightly less than
a closure.
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2.1 The Basic Idea

To C]’s fairly conventional object-oriented programming model, Polyphonic C] adds
just two new concepts: asynchronous methods and chords.

Asynchronous Methods. Conventional methods are synchronous, in the sense that
the caller makes no progress until the callee completes. In Polyphonic C], if a
method is declared asynchronous then any call to it is guaranteed to complete
essentially immediately. Asynchronous methods never return a result (or throw an
exception); they are declared by using the async keyword instead of void. Calling
an asynchronous method is much like sending a message, or posting an event.

Since asynchronous methods have to return immediately, the behaviour of a
method such as

async postEvent(EventInfo data) {
// large method body

}
is the only thing it could reasonably be: the call returns immediately and ‘large
method body’ is scheduled for execution in a different thread (either a new one
spawned to service this call, or a worker from some pool). However, this kind of
definition is actually rather rare in Polyphonic C]. More commonly, asynchronous
methods are defined using chords, as described below, and do not necessarily require
new threads.

Chords. A chord (also called a ‘synchronization pattern’, or ‘join pattern’) con-
sists of a header and a body. The header is a set of method declarations separated
by ‘&’. The body is only executed once all the methods in the header have been
called. Method calls are implicitly queued up until/unless there is a matching chord.
Consider for example

public class Buffer {
public string Get() & public async Put(string s) {

return s;
}

}
The code above defines a class Buffer with two instance methods, which are jointly
defined in a single chord. Method string Get() is a synchronous method taking no
arguments and returning a string. Method async Put(string s) is asynchronous
(so returns no result) and takes a string argument.

If buff is a instance of Buffer and one calls the synchronous method buff .Get()
then there are two possibilities:

—If there has previously been an unmatched call to buff .Put(s) (for some string s)
then there is now a match, so the pending Put(s) is dequeued and the body of
the chord runs, returning s to the caller of buff .Get().

—If there are no previous unmatched calls to buff .Put(.) then the call to buff .Get()
blocks until another thread supplies a matching Put(.).

Conversely, on a call to the asynchronous method buff .Put(s), the caller never
waits, but there are two possible behaviours with regard to other threads:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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—If there has previously been an unmatched call to buff .Get() then there is now
a match, so the pending call is dequeued and its associated blocked thread is
awakened to run the body of the chord, which returns s.

—If there are no pending calls to buff .Get() then the call to buff .Put(s) is simply
queued up until one arrives.

Exactly which pairs of calls are matched up is unspecified, so even a single-threaded
program such as

Buffer buff = new Buffer();
buff .Put(”blue”);
buff .Put(”sky”);
Console.Write(buff .Get() + buff .Get());

is non-deterministic (printing either ”bluesky” or ”skyblue”).3

Note that the implementation of Buffer does not involve spawning any threads:
whenever the body of the chord runs, it does so in a preexisting thread (viz. the
one that called Get()). The reader may at this point wonder what are the rules for
deciding in which thread a body runs, or how we know to which method call the
final value computed by the body will be returned. The answer is that in any given
chord, at most one method may be synchronous. If there is such a method, then
the body runs in the thread associated with a call to that method, and the value is
returned to that call. Only if there is no such method (i.e. all the methods in the
chord are asynchronous) does the body run in a new thread, and in that case there
is no value to be returned.

It should also be pointed out that the Buffer code, trivial though it is, is thread-
safe. The locking that is required (for example to prevent the argument to a single
Put being returned to two distinct Gets) is generated automatically by the compiler.
More precisely, deciding whether any chord is enabled by a call and, if so, removing
the other pending calls from the queues and scheduling the body for execution is
an atomic operation. Apart from this atomicity guarantee, however, there is no
monitor-like mutual exclusion between chord bodies. Any mutual exclusion that is
required must be programmed explicitly in terms of synchronization conditions in
chord headers.

The Buffer example uses a single chord to define two methods. It is also possible
(and common) to have multiple chords involving a given method. For example:

public class Buffer {
public string Get() & public async Put(string s) {

return s;
}

public string Get() & public async Put(int n) {
return n.ToString();

}
}

3In a real implementation the nondeterminism in this very simple example may be resolved stat-
ically, so different executions will always produce the same result; this is an allowable implemen-
tation.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



6 · Nick Benton et al.

Now we have defined one method for getting data out of the buffer, but two methods
for putting it in (which happen to be distinguished by type rather than name). A
call to Get() can synchronize with a call to either of the Put() methods. If there
are queued calls to both Put()s, then which one synchronizes with a subsequent
Get() is unspecified.

3. INFORMAL SPECIFICATION

3.1 Grammar

The syntactic extensions to the C] grammar [ECMA 2001, Appendix C] are very
minor. We add a new keyword, async, and add it as an alternative return-type:

return-type ::= type | void | async

This allows methods, delegates and interface methods to be declared asynchronous.
In class-member-declarations, we replace method-declaration with chord-declara-
tion:

chord-declaration ::=
method-header [& method-header]∗ body

method-header ::=
attributes modifiers return-type member-name(formals)

We call a chord declaration trivial if it declares a single, synchronous method (i.e.
it is a standard C] method declaration).

3.2 Well-Formedness

Extended classes are subject to a number of well-formedness conditions:

—Within a single method-header:
(1) If return-type is async then the formal parameter list formals may not con-

tain any ref or out parameter modifier.4

—Within a single chord-declaration:
(2) At most one method-header may have a non-async return-type.
(3) If the chord has a method-header with return-type type, then body may use

return statements with type expressions, otherwise body may use empty
return statements.

(4) All the formals appearing in method-headers must have distinct identifiers.
(5) Two method-headers may not have both the same member-name and the

same argument type signature.
(6) The method-headers must either all declare instance methods or all declare

static methods.
—Within a particular class:

(7) All method-headers with the same member-name and argument type sig-
nature must have the same return-type and identical sets of attributes and
modifiers.

4Neither ref nor out parameters make sense for asynchronous messages, since they are both
passed as addresses of locals in a stack frame that may have disappeared when the message is
processed.
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(8) If it is a value class (struct), then only static methods may appear in non-
trivial chords.

(9) If any chord-declaration includes a virtual method m with the override
modifier5, then any method n that appears in a chord with m in the super-
class containing the overridden definition of m must also be overridden in
the subclass.

Most of these conditions are fairly straightforward, though Conditions 2 and 9
deserve some further comment.

Condition 9 provides a conservative, but simple, sanity check when refining a class
that contains chords since, in general, implementation inheritance and concurrency
do not mix well [Matsuoka and Yonezawa 1993] (see Fournet et al. [2000] for a
discussion of “inheritance anomalies” in the context of the join calculus). Our
approach here is to enforce a separation of these two concerns: a series of chords
must be syntactically local to a class or a subclass declaration; when methods are
overridden, all their chords must also be completely overridden. If one takes the
view that the implementation of a given method consists of all the synchronization
and bodies of all the chords in which it appears then our inheritance restriction
seems not unreasonable, since in (illegal) code such as

class C {
virtual void f () & virtual async g() { /∗ body1 ∗/ }
virtual void f () & virtual async h() { /∗ body2 ∗/ }

}

class D : C {
override async g() { /∗ body3 ∗/ }

}
one would, by overriding g(), have also ‘half’ overridden f ().

More pragmatically, removing the restriction on inheritance makes it all too easy
to introduce inadvertent deadlock (or ‘async leakage’). If the code above were legal,
then code written to expect instances of class C that makes matching calls to f ()
and g() would fail to work when passed an instance of D—all the calls to g() would
cause body3 to run and all the calls to f () would deadlock.

Note that the inheritance restriction means that declarations such as

virtual void f () & private async g() { /∗ body1 ∗/ }
are incorrect: declaring just one of f () and g() to be virtual makes no sense (and
is flagged as an error by our compiler), as overriding one requires the other to be
overridden too. It is also worth observing that there is a transitive closure operation
implicit in our inheritance restriction: if f () is overridden and joined with g() then
because g() must be overridden, so must any method h() that is joined with g()
and so on.

5In C], methods that are intended to be overridable in subclasses are explicitly marked as such
by use of the virtual modifier, whilst methods that are intended to override ones inherited from
a superclass must explicitly say so with the override modifier.
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It is possible to devise more complex and permissive rules for overriding. Our
current rule has the advantage of simplicity, but we refer the reader to Fournet et al.
[2000] for a more thorough study of inheritance and concurrency in the join calculus.
In that paper, classes are collections of (partial) synchronization patterns, which can
be combined and transformed using a few inheritance operators. As usual, objects
can then be created by instantiating classes, and their synchronization patterns are
not extensible. The composition of classes is controlled by a sophisticated typing
discipline that prevents “message not understood” errors at runtime.

Well-formedness Condition 2 above is also justified by a potentially bad interac-
tion between existing C] features and the pure join calculus. Allowing more than
one synchronous call to appear in a single chord would give a potentially useful
rendezvous facility (provided one also added syntax allowing results to be returned
to particular calls). For example, instances of the following class

class RendezVous {
public int f (int i ) & public int g(int j ) {

return j to f ;
return i to g ;

}
}

would match pairs of calls to f and g , which then exchange their values and proceed.
However, one would also have to decide in which of the blocked threads the body
should run, and this choice is generally observable. If this were only because thread
identities can be obtained and checked for equality, the problem would be fairly
academic. But, in C], the choice of thread could make a significant difference to
the behaviour of the program—due to reentrant locks, stack-based security and
thread-local variables—thus making & ‘very’ non-commutative.

Of course, it is not hard to program explicitly the rendezvous above in Polyphonic
C]:

class RendezVous {
class Thunk {

int wait () & async reply(int j ) { return j ; }
}
public int f (int i ) {

Thunk t = new Thunk();
af (i ,t );
return t .wait();

}
private async af (int i ,Thunk t) & public int g(int j ) {

t .reply (j ); // returning to f
return i ; // returning to g

}
}

For each call to f , we create an instance of the auxiliary class Thunk , in order to
wait for an asynchronous reply message, which is sent after synchronization with
some g .
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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3.3 Typing Issues

We treat async as a subtype of void and allow covariant return types just in the
case of these two (pseudo)types. Thus

—an async method may override a void one,
—a void delegate may be created from an async method, and
—an async method may implement a void method in an interface

but not conversely. This design makes intuitive sense (an async method is a void
one, but has the extra property of returning ‘immediately’) and also maximizes
compatibility with existing C] code (superclasses, interfaces and delegate defini-
tions) making use of void.

4. PROGRAMMING IN POLYPHONIC C]

Having introduced the language, we now show how it may be used to address a
range of concurrent programming problems.

4.1 A Simple Cell Class

We start with an implementation of a simple one-place cell class. Cells have two
public synchronous methods: void Put(object o) and object Get(). A call to
Put blocks until the cell is empty and then fills the cell with its argument. A call
to Get blocks until the cell is full and then removes and returns its contents:

public class OneCell {
public OneCell() {

empty();
}
public void Put(object o) & private async empty() {

contains(o);
}
public object Get() & private async contains(object o) {

empty();
return o;

}
}

In addition to the two public methods, the class uses two private asynchronous
methods, empty() and contains(object o), to carry the state of cells. There is a
simple declarative reading of the constructor and the two chords that explains how
this works:

Constructor. When a cell is created, it is initially empty().
Put-chord. If we Put an object o into a cell that is empty() then the cell subse-

quently contains(o).
Get-chord. If we Get() the contents of a cell that contains an object o then the

cell becomes empty() and the returned value is o.
Implicitly. In all other cases, Puts and Gets wait.
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The technique of using private asynchronous methods (rather than fields) to carry
state is very common in Polyphonic C]. Observe that the constructor establishes,
and every body in class OneCell preserves, a simple and easily verified invariant:

There is always exactly one pending asynchronous method call: either
empty(), or contains(o) for some object o.

(In contrast there may be an arbitrary number of client threads blocked with pend-
ing calls to Put or Get , or even concurrently running statement return o within
the last body.) Hence one can also read the class definition as a direct specification
of an automaton:

empty contains(o)

Put(o)

Get()
return o

4.2 Reader-Writer Locks

As a more realistic example of the use of asynchronous methods to carry state
and chords to synchronize access to that state, we now consider the classic prob-
lem of protecting a shared mutable resource with a multiple-reader, single-writer
lock. Clients each request, and then release, either shared access or exclusive ac-
cess, using the corresponding public methods Shared , ReleaseShared , Exclusive,
and ReleaseExclusive. Requests for shared access block until no other client has
exclusive access, whilst requests for exclusive access block until no other client has
any access. A canonical solution to this problem using traditional concurrency
primitives in Modula 3 is given by Birrell [1989]; using Polyphonic C], it can be
written with just five chords:

class ReaderWriter
{

ReaderWriter() { idle (); }

public void Shared() & async idle() { s (1); }
public void Shared() & async s(int n) { s(n+1); }
public void ReleaseShared() & async s(int n) {

if (n == 1) idle(); else s(n−1);
}
public void Exclusive() & async idle() {}
public void ReleaseExclusive() { idle (); }

}
Provided that every release follows the corresponding request, the invariant is that
the state of the lock (no message, a single message idle (), or a single message s(n)
with n > 0) matches the kind and number of threads currently holding the lock (an
exclusive thread, no thread, or n sharing threads).

In case there is at most one message pending on a given private method, it is
a matter of choice whether to use private fields in the object or parameters in
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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the private message. In the example above, n is relevant only when there is an s ()
message present. Nonetheless, we could write instead the following equivalent code:

class ReaderWriterPrivate
{

ReaderWriter() { idle (); }
private int n = 0; // protected by s()

public void Shared() & async idle() { n=1; s(); }
public void Shared() & async s() { n++; s(); }
public void ReleaseShared() & async s() {

if (−−n == 0) idle(); else s();
}
public void Exclusive() & async idle() {}
public void ReleaseExclusive() { idle (); }

}

Our implementation and the underlying operating system scheduler provide only
basic fairness properties—for instance, if there are enough pending calls in a poly-
phonic object to match a chord, then at least one chord body eventually runs.
Hence, it is often useful to program explicitly some additional application-specific
fairness or priority. For example, with the code above, writers may not be able to
acquire an exclusive lock as long as new readers keep acquiring a shared lock. We
further refine this code to implement a particular fairness policy between readers
and writers: when there are pending writers, at least one writer will acquire the
lock after all current readers release it. To this end, we add extra shared states: t (),
in which we do not accept new readers, and idleExclusive (), in which we provide
the exclusive lock to a previously-selected thread:

class ReaderWriterFair
{

... // same content as in ReaderWriterPrivate, plus:

public void ReleaseShared() & async t() {
if (−−n == 0) idleExclusive(); else t();

}
public void Exclusive() & async s() { t(); wait(); }
void wait() & async idleExclusive() {}

}

4.3 Combining Asynchronous Messages

The external interface of a server that uses message-passing will typically consist of
asynchronous methods, each of which takes as arguments both the parameters for a
request and somewhere to send the final result or notification that the request has
been serviced. For example, using delegates as callbacks, a service taking a string
argument and returning an integer might look like:
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public delegate async IntCallback(int result);

public class Service {
public async Request(string arg , IntCallback cb) {

int r ;
... // do some work
cb(r ); // send the result back

}
}

A common client-side pattern then involves making several concurrent asynchronous
requests and later blocking until all of them have completed. This may be pro-
grammed as follows:

class Join2 {
public IntCallback firstcb ;
public IntCallback secondcb;
public Join2 () {

firstcb = new IntCallback(first);
secondcb = new IntCallback(second);

}
public void wait(out int i , out int j )
& async first(int fst )
& async second(int snd) {

i = fst ; j = snd ;
}

}

class Client {
public static void Main(string[] args) {

Service s1 = ... ;
Service s2 = ... ;
Join2 x = new Join2 ();
s1 .Request(args [0], x . firstcb );
s2 .Request(args [1], x .secondcb);
... // do something useful in the meantime...
int i ,j ;
x .wait(out i , out j ); // wait for both results to come back
... // do something with them

}
}

The call to x .wait(i ,j ) will block until/unless both of the services have replied by
invoking their respective callbacks on x . Once that has happened, the two results
will be assigned to i and j and the client will proceed. Generalizing Join2 (which,
of course, naturally belongs in a general-purpose library) to an arbitrary number
of simultaneous calls, or defining classes that wait for conditions such as ‘at least 3
out of 5 calls have completed’ is straightforward.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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4.4 Active Objects

Actors [Hewitt 1977; Agha 1990] model concurrency in terms of active agents that
communicate by asynchronous message passing. Based on this idea, a number of
programming languages, such as ABCL/1 [Yonezawa 1990], have been designed
around the principle of unifying the notions of process and object to yield active
objects. A simple version of this model gives each active object its own thread of
control, which sequentially processes asynchronous messages received from other
such objects. One way to express this pattern in Polyphonic C] is via inheritance
from an abstract base class:

public abstract class ActiveObject {
protected bool done;

abstract protected void ProcessMessage();

public ActiveObject () {
done = false;
mainLoop();

}

async mainLoop() {
while (!done) {

ProcessMessage();
}

}
}

The constructor of ActiveObject calls the asynchronous method mainLoop(), which
spawns a new message-handling thread for that object. Subclasses of ActiveObject
then define chords for each message to synchronize with a call to ProcessMessage().
Here, for example, is a skeleton of an active object that multicasts stock quote
messages to a list of clients:

public class StockServer : ActiveObject {
private ArrayList clients = new ArrayList();

public async AddClient(Client c) // add new client
& override protected void ProcessMessage() {

clients .Add(c);
}
public async WireQuote(Quote q) // get new quote off wire
& override protected void ProcessMessage() {

foreach (Client c in clients ) {
c .UpdateQuote(q); // and send to all clients

}
}

public async CloseDown() // request to terminate
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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& override protected void ProcessMessage() {
done = true;

}
}

Note that access to done and clients need not be protected by a lock, since only
the message-handling thread accesses them. Also, one might attempt to share the
CloseDown() behaviour amongst all active objects by moving the last chord to
the superclass and making ProcessMessage() virtual instead of abstract, but this
would be caught at compile-time as a violation of the inheritance restriction of
Section 3.2.

4.5 Custom Schedulers

In Polyphonic C], we have to both coexist with and build upon the existing thread-
ing model. Because these threads are relatively expensive, and are the holders of
locks, C] programmers often need explicit control over thread usage. In such cases,
Polyphonic C] is a convenient way to write what amount to custom schedulers for
a particular application.

To illustrate this point, we present an example in which we dynamically schedule
series of related calls in large batches, to favour locality, in the spirit of the staged
computation server of Larus and Parkes [2001].

Assume the class Heavy encapsulates access to expensive resources, such as files
or remote connections. Each client first allocates an instance of class Heavy , then
performs a series of calls to Work , and eventually calls Close to release the resource.
Calls to the constructor Heavy(resourceId) are assumed to be potentially blocking
and relatively expensive.

class Heavy {
public Heavy (int resourceId) { /∗ so slow! ∗/ }
public int Work(int request) { /∗ relatively fast ∗/ }
public void Close () { ... }

}

The class below implements our scheduler. For each resource q , an instance of
class Burst provides a front-end that attempts to organize calls into long series
that share the cost of Heavy(q). A burst can be in two states, represented by
either idle () or open(). The state is initially idle. When a first thread actually
tries to use the resource, the state becomes open(), and the thread calls Work(p)
on the result of a potentially-blocking Heavy(q) call. As long as the state is open,
subsequent callers are queued-up. When the first thread completes its Work , and
before closing the Heavy resource, it also calls Work on behalf of any pending calls,
resuming their threads with the respective results. Meanwhile, the state is still
open, and new threads may be queued-up. As long as there are pending calls, they
are similarly processed; otherwise, the state becomes idle again. As in Section 3.2,
the auxiliary class Thunk is used to block each queued-up thread and resume it
with an asynchronous message carrying the result r .
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class Burst {
int others = 0;
int q ;
public Burst(int q) { this.q = q ; idle (); }

public int Work(int p) & async idle() {
open();
Heavy h = new Heavy(q);
int r = h.Work(p);
helpful (h ); // any delayed threads?
h .Close ();
return r ;

}
public int Work(int p) & async open() {

others++; open();
Thunk t = new Thunk(); delayed(t ,p);
return t .Wait(); // usually blocking

}
void helpful (Heavy h) & async open() {

if (others == 0) idle ();
else {

int batch = others ; others = 0;
open();
while(batch−− > 0) extraWork(h);
helpful (h ); // newly−delayed threads?

}
}
void extraWork(Heavy h) & async delayed(Thunk t ,int p) {

t .Done(h.Work(p));
}

}

class Thunk {
public int Wait() & public async Done(int r) {

return r ;
}

}
We have written simulations that, unsurprisingly, exhibit a large speedup when
numerous client threads call Burst rather than independently calling Heavy .

5. IMPLEMENTATION

This section describes the implementation of chords using lower-level concurrency
primitives. The compilation process is best explained as a translation from a poly-
phonic class to a plain C] class. The resulting class has the same name and signature
as the source class (after mapping async to void), and also has private state and
methods to deal with synchronization.
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5.1 Synchronization and State Automata

In the implementation of a polyphonic class, each method body combines two kinds
of code, corresponding to the synchronization of polyphonic method calls (generated
from the chord headers) and to their actual computation (copied from the chord
bodies), respectively.

We now describe how the synchronization code is generated from a set of chords.
Since synchronization is statically defined by those chords, we can efficiently compile
it down to a state automaton. This is the approach initially described by Le Fessant
and Maranget [1998], though our implementation does not construct explicit state
machines.

The synchronization state consists of the pending calls for all methods that oc-
cur in (non-trivial) chords, that is, threads for regular methods and messages for
asynchronous methods. However, synchronization depends only on the presence or
absence of pending calls to each method; the number of calls, the actual parame-
ters and the calling contexts become relevant only after a chord is fired. Hence, the
whole synchronization state can be summarized in a bitmap, with a single bit that
records the presence of (one or more) pending calls, for each method appearing in
a least one chord. Accordingly, every chord declaration is represented as a constant
bitmap with a bit set for every method appearing in that chord, and the synchro-
nization code checks whether a chord can be fired by testing the synchronization
bitmask against constant bitmasks.

Performance considerations. Ideally, the cost of polyphonic method calls should
be similar to that of regular method calls unless the call blocks waiting for async
messages—in that case, we cannot avoid paying the rather high cost of dynamic
thread scheduling.

When an asynchronous method is called, it performs a small amount of compu-
tation on the caller thread before returning.

When a synchronous method is called, the critical path to optimize is the one
in which, for at least one chord, all complementary asynchronous messages are
already present. In that case, the synchronization code retrieves the content of
the complementary messages, updates the synchronization state, and immediately
proceeds with the method body. Otherwise, the thread must be suspended, and
the cost of running our synchronization code is likely to be small as compared to
lower-level context-switching and scheduling.

Firing a completely asynchronous chord is always comparatively expensive since
it involves spawning a new thread. Hence, when an asynchronous message arrives, it
makes sense to check for matches with synchronous chords first. We have also tried
lowering the cost of asynchronous chords by using .NET’s thread pool mechanism
rather than simply spawning a fresh system thread every time. The limits and
scheduling policy of the thread pool are problematic for some applications, however,
so we have now reverted to creating fresh threads (a future refinement may be to
use attributes6 to allow programmer control over thread creation policy).

6Attributes are a standardized, declarative way of adding custom metadata to .NET programs.
Code-manipulating tools and libraries, such as compilers, debuggers or the object serialization
libraries can then use attribute information to vary their behaviour.
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Low-level Concurrency. The code handling the chords must be thread-safe, for
all source code in the class. To ensure this, we use a single, auxiliary lock protecting
the private synchronization state of each object.7 Locking occurs only briefly for
each incoming call, and involves a separate lock for each polyphonic object, so we
expect contention to be rare compared with more typical C] programs, which hold
object locks during non-trivial computations.8

This lock is independent of the regular object lock, which may be used as usual
to protect the rest of the state and prevent race conditions while executing chord
bodies.

5.2 The Translation

We now present, by means of a simple example, the details of the translation
of Polyphonic C] into ordinary C]. The translation presented here is actually an
abstraction of those we have implemented: for didactic purposes, we modularize the
translated code by introducing auxiliary classes for queues and bitmasks, whereas
our current implementation mostly inlines the code contained in these classes.

Supporting Classes. The following value class (structure) provides operations on
bitmasks:

struct BitMask {
private int v ; // = 0;
public void set(int m) { v |= m; }
public void clear(int m) { v &= ˜m; }
public bool match(int m) { return (˜v & m)==0; }

}
Next, we define the classes that represent message queues. To every asynchronous

method appearing in a chord involving more than one method, the compiler asso-
ciates a queue of pending messages, with an empty property for testing its state
and two methods, add and get , for enqueueing and dequeueing entries. The im-
plementation of each queue depends on the message contents (and, potentially, on
compiler-deduced invariants); it does not necessarily use an actual queue.

A simple case is that of single-argument asynchronous messages (here, int mes-
sages); these generate a thin wrapper on top of the standard queue library:9

class intQ {
private Queue q ;
public intQ() {q = new Queue(); }
public void add(int i) { q .Enqueue(i); }
public int get() {return (int) q .Dequeue(); }
public bool empty {get{return q .Count == 0;}}

}

7We actually use the regular object lock for one of the asynchronous queues, if a suitable one is
free; otherwise we allocate a fresh object just for its lock.
8On a multiprocessor, using a spinlock may be appropriate here.
9Readers unfamiliar with C] may be worried by the definition of empty. This is a (read-only)
property—a parameterless method that can be called using field-like syntax.
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Another important case is that of empty (no argument) messages. Queues for
such messages are implemented as a simple counter.

class voidQ {
private int n;
public voidQ() { n = 0; }
public void add() { n++; }
public void get() { n−−; }
public bool empty {get{ return n==0; }}

}
Finally, for synchronous methods, we need classes implementing queues of waiting

threads. As with message queues, there is a uniform interface and a choice of several
implementations. Method yield is called to store the current thread in the queue
and await additional messages; it assumes the thread holds some private lock on a
polyphonic object, and releases that lock while waiting. Conversely, method wakeup
is called to wake up a thread in the queue; it immediately returns and does not
otherwise affect the caller thread.

The first version of our compiler managed thread queues explicitly and used the
Thread .Sleep() and Thread .Interrupt() methods of the .NET Framework to block
and resume threads, using the following implementation:

class threadQ {
private Queue q ;
private bool interrupted = false;
public threadQ() { q = new Queue(); }
public bool empty {get{ return (q .Count == 0); }}
public void yield(object myCurrentLock) {

q .Enqueue(Thread .CurrentThread);
Monitor .Exit(myCurrentLock);
try {

Thread .Sleep(Timeout .Infinite);
} catch (ThreadInterruptedException) {}
Monitor .Enter(myCurrentLock);
q .Dequeue();
interrupted = false;

}
public void wakeup() {

if (! interrupted ) {
((Thread) q .Peek()).Interrupt ();
interrupted = true;

}
}

}
The specification of monitors guarantees that an interrupt on a non-sleeping thread
does not happen until the thread actually does enter a sleeping or waiting state,
hence it is correct to release the lock before entering the try catch statement. As
the thread awakens in the catch clause, it re-acquires the lock and then pops its
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queue (the thread that is dequeued and discarded is always the current thread).
The interrupted flag is used to ensure that the thread at the head of the queue is
only interrupted once.

The interruption-based implementation of thread queues was the most efficient
on the 1.0 version of .NET, though it had some disadvantages (see Section 6).
The 1.1 release significantly improved the performance of the Monitor .Wait(),
Monitor .Pulse() and Monitor .PulseAll() methods10, so we now implement thread
queues using the built-in support for waiting and notification instead:

class threadQ {
private bool signalled = false;
private int count = 0;
public bool empty {get{ return (count == 0); }}

public void yield(object myCurrentLock) {
count++;
Monitor .Exit(myCurrentLock);
lock(this) {

while (!signalled ) {
Monitor .Wait(this);

}
signalled = false;

}
Monitor .Enter(myCurrentLock);
count−−;

}

public void wakeup() {
lock(this) {

if (! signalled ) {
signalled = true;
Monitor .Pulse(this);

}
}

}
}

The queue of threads blocked on a call to a synchronous method is now implemented
as the wait queue of the threadQ object itself, which essentially implements a binary
semaphore.

Generated Synchronization Code. Figure 1 shows a simple polyphonic class Token
(from Section 4.5, though with the addition of a parameter passed to and returned
from the Grab method) and its translation into ordinary C], making use of the aux-
iliary classes defined above. Token implements an n-token lock. It has a regular

10These operations have the same behaviour as Object .wait , Object .notify and Object .notifyAll
in Java.
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class Token {
public Token(int initial tokens) {

for (int i = 0; i < initial tokens ; i++) Release();
}
public int Grab(int id) & public async Release() {

return id ;
}

}

class Token {
private const int mGrab = 1 << 0;
private const int mRelease = 1 << 1;
private threadQ GrabQ = new threadQ();
private voidQ ReleaseQ = new voidQ();

private const int mGrabRelease = mGrab | mRelease;
private BitMask s = new BitMask();
private object mlock = ReleaseQ ;

private void scan() {
if (s .match(mGrabRelease)) {GrabQ .wakeup(); return;}

}
public Token(int initial tokens) {

for (int i = 0; i < initial tokens ; i++) Release();
}
[OneWay] public void Release() {

lock(mlock) {
ReleaseQ .add();
if (! s .match(mRelease)) {
s .set (mRelease);
scan (); }}

}
public int Grab(int id) {

Monitor .Enter(mlock);
if (! s .match(mGrab)) goto now ;

later :
GrabQ .yield(mlock); if (GrabQ .empty) s.clear(mGrab);

now :
if (s .match(mRelease)) {

ReleaseQ .get (); if (ReleaseQ .empty) s.clear(mRelease);
scan ();
Monitor .Exit(mlock);
{
return id ; // source code for the chord
}

}else{
s .set (mGrab); goto later ; }}

}

Fig. 1. The Token class and its translation
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synchronous method, an asynchronous method, and a single chord that synchro-
nizes the two.

We now describe what is happening in the translations of the two methods:

Code for Release. After taking the chord lock, we add the message to the queue
and, unless there were already messages stored in ReleaseQ , we update the mask
and scan for active chords.

In a larger class with chords that do not involve Release, the scan() statement
could be usefully inlined and specialized: we only need to test patterns where
async Release() appears; besides, we know that the mRelease bit is set.

The use of OneWay. The reader unfamiliar with C] may wonder why the trans-
lation of the Release() method is prefixed with ‘[OneWay ]’. This is an attribute
that indicates to the .NET infrastructure that where appropriate (e.g. when calling
between different machines) calls of Release() should be genuinely non-blocking.
The translation adds this attribute to all asynchronous methods.

Code for Grab. After taking the chord lock, we first check whether there are
already deferred Grabs stored in GrabQ . If so, this call cannot proceed for now so
we enqueue the current thread and will retry later.

Otherwise, we check whether there is at least one pending Release message to
complete the chord int Grab(int id) & async Release(). If so, we select this chord
for immediate execution; otherwise we update the mask to record the presence of
deferred Grabs, enqueue the current thread and will retry later. (In classes with
multiple patterns for Grab, we would perform a series of tests for each potential
chord.) Notice that it is always safe to retry, independently of the synchronization
state.

Once a chord is selected, we still have to update ReleaseQ and the mask. (Here,
we have no asynchronous parameters; more generally, we would remove them from
the queue and bind them to local variables.) Next, we check whether there are still
enough messages to awaken another thread, as discussed below. Finally, we release
the lock and enter the block associated with the selected chord.

Why rescanning?. One may wonder why we systematically call scan() after se-
lecting a chord for immediate execution (just before releasing the lock and executing
the guarded block). In our simple example, this is unnecessary whenever we already
know that this was the last scan() call or the last Release() message. In general,
however, this may be required to prevent deadlocks. Consider for instance the
polyphonic class

class Foo {
void m1 () & async s() & async t() {...}
void m2 () & async s() {...}
void m3 () & async t() {...}

}
and the following global execution trace, with four threads running in parallel:

Thread 1. calls m1 () and blocks.
Thread 2. calls m2 () and blocks.
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Thread 0. calls t () then s (), awaking Thread 1
Thread 3. calls m3 () and succeeds, consuming t ().
Thread 1. retries m1 () and blocks again.

Observe that, as Thread 0 awakes Thread 1, there is no guarantee that Thread 1
runs at once—on the contrary, Thread 0 typically keeps running until it is pre-
empted, while Thread 1 is added to the queue of executable threads. In our case,
there is a race condition between Thread 1 and Thread 3 to consume t (). Thread 3
preempts Thread 1, which is left with a single message s () and blocks again. In the
final state, only Thread 2 can consume s () but if no other thread awakens it, we
will have a deadlock.

Accordingly, in our implementation, the synchronization code in Thread 3 per-
forms an additional scan() that awakes Thread 2 in such unfortunate cases. (In
many special cases, the final scan() can safely be omitted, but identifying these
cases would complicate the translation.)

Deadlock Freedom. We now sketch a proof that our translation does not introduce
deadlocks. (Of course, calls involving a chord that is never fired may be deadlocked,
and our translation must implement those deadlocks.)

We say that an object is active when there are enough calls in the queues to
trigger one of its patterns; assuming a fair scheduling of runnable threads, we show
that active states are transient. We prove the invariant: when an object is active,
at least one thread on top of a queue is scheduled for execution and can succeed.

—After scan(), the invariant always holds.
—An object becomes active when an asynchronous message is received, and this

always triggers a scan.
—A thread whose polyphonic call succeeds (and thus consumes asynchronous mes-

sages) also triggers a scan.

When the algorithm awakes a thread, it is guaranteed that this thread may succeed
if immediately scheduled, but not that it will necessarily succeed.

Fully Asynchronous Chords. To complete the description of our implementation,
we describe the compilation of fully asynchronous chords. When such chords are
fired, there is no thread at hand to execute their body, so a new thread must be
created.

To illustrate this case, assume the class Token also contains the asynchronous
method declaration

public async Live(string s,int id) {
Grab(id); Release ();
Console.WriteLine(s);

}
The generated code is verbose but straightforward:

private class liveThunk {
string s ; int id ;
Token parent ;
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public liveThunk(Token parent , string s, int id) {
this.s = s ; this.id = id ;
this.parent = parent ;

}
public void run() {

parent .liveBody(s ,id );
}

}

private void liveBody(string s, int id) {
Grab(id); Release (); // async chord body code
Console.WriteLine(s);

}

public void Live(string s,int id) {
liveThunk th = new liveThunk(this,s,id);
ThreadStart d = new ThreadStart(th.run);
(new Thread(d)).Start();

}
The new thread starts by invoking a delegate to the run method on a fresh instance
of an auxiliary class liveThunk . The run method calls the liveBody method on the
hosting Token object, passing the arguments to the original call to Live.

More generally, for a chord containing several asynchronous methods, code anal-
ogous to that in the Live method above occurs instead of mQ .wakeup() to fire the
pattern in method scan().

6. DISCUSSION AND FUTURE WORK

6.1 Implementations and Samples

We have two prototype implementations of Polyphonic C]. The first is a lightweight,
source-to-source translator written in ML. This has proven invaluable in explaining
the language to others, and is straightforward to modify and maintain, though it
does not cope with the full language. As our initial experiences using Polyphonic C]

were positive, we have recently built a more robust, full-featured and maintainable
implementation on top of an ‘experimentation-friendly’ C]-in-C] compiler being
developed by another group within Microsoft.

We have written a number of non-trivial samples in Polyphonic C], including
some web combinators along the lines of Cardelli and Davies [1999], an animated
version of the dining philosophers, a distributed stock-dealing simulation built on
.NET’s remoting infrastructure11, a multi-threaded client for the TerraServer web
service [Barclay et al. 2000; Barclay et al. 2002], and a solution [Benton 2003]
to the “Santa Claus” problem [Trono 1994; Ben-Ari 1998]. In all these cases,
we could rapidly, correctly and concisely express the intended concurrency and
synchronization. When interfacing with libraries, however, we sometimes had to

11Remoting provides remote method call over TCP (binary) or HTTP (SOAP).
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write thin wrappers providing a polyphonic interface to code written in a different
style (for example, the auto-generated proxy classes for web services).

It is interesting that we have been able to implement our high-level concurrency
primitives in two rather different ways as the performance tradeoffs of the under-
lying runtime have changed (see below). The original technique of implementing
thread queues using interruption had some drawbacks, however. The most obvious
is that it partially ‘uses up’ the ability to interrupt threads for other reasons. If
one tries to interrupt a thread during a wait in a chord then the interrupt will
effectively be ignored; if the interrupt is delivered during a wait in user code, then
an exception will be thrown. In many situations where one might traditionally
use thread interruption, such as responding the the user cancelling a long run-
ning blocking operation, programming the cancellation behaviour more explicitly
in Polyphonic C] is straightforward, and arguably preferable. Nevertheless, this is
an area in which our first implementation was less compatible with the pre-existing
concurrency model than it could be. A further disadvantage is that .NET code that
uses thread interruption requires slightly higher security permissions to run. Our
current compilation scheme, using Monitor .Wait() and Monitor .Pulse() is much
more satisfactory.

6.2 Performance

In practice, overall performance was not an issue with any of our samples. Our
implementation of concurrency abstraction entirely relies on the .NET framework,
and largely reflects its general performance. Besides, in the presence of remote
messaging, the costs of local synchronization become negligible.

We have, however, run a small number of single-machine micro-benchmarks to
estimate the costs of our primitives and to compare the efficiency of small samples
coded in the ‘natural’ style in Polyphonic C] with their ‘natural’ C] equivalents.
Our quantitative results should be treated with caution: small changes in the code
or test environment can yield very different results on such small tests.

The performance figures (in thousands of operations per second) for each test
are shown in Figure 2. All figures refer to the .NET Framework version 1.1. The
single-processor numbers were collected using Windows XP Professional SP1 with
an Athlon 1500+ processor and 512MB RAM; The dual-processor numbers were
collected using Windows Server 2003 on a machine with two 730Mhz Pentium III
processors and 640MB RAM.

Calling a method that is defined in a chord involves at least acquiring and
releasing a lock and some bitmap operations. It may also involve allocation of
garbage-collected objects to hold method arguments and comparatively expensive
calls to the .NET queue classes. The first seven lines of the table indicate the
speed of different forms of void, parameterless non-polyphonic method calls with
an empty body, plus a call with a string argument, as a baseline for assessing
these costs. (Adding an integer parameter yields much the same times as the
parameterless cases, so we omit those figures.) The four ‘instance call s () consum-
ing’ lines give the performance of a call to s defined by void s() & async a() {},
void s() & async a1 () & async a2 () {}, void s() & async a(int v) {}, or void
s () & async a(string v) {}, respectively, in case synchronization always succeeds
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Operations per second (thousands)

Single-Processor Benchmark Polyphonic Non-polyphonic

virtual s () 143,000
instance s () 333,000
static s () 333,000
synchronized virtual s () 15,600
synchronized instance s () 15,900
synchronized static s () 15,600
synchronized instance s(string) 14,400

instance s () consuming a() 12,000
instance s () consuming a1 () and a2() 11,000
instance s () consuming a(int) 5,260
instance s () consuming a(string) 4,050

instance a() queued 18,200
instance a(int) queued 1,660
instance a(string) queued 5,260

instance s () consuming and sending a() 6,540
instance s () consuming and sending a1 () and a2 () 3,950
instance s () consuming and sending a(int) 2,810
instance s () consuming and sending a(string) 2,720

ping pong 115 240
bounded buffer size=100, 1 producer, 1 consumer 682 115
bounded buffer size=100, 2 producers, 2 consumers 423 118

Operations per second (thousands)

Dual-Processor Benchmark Polyphonic Non-polyphonic

ping pong 66 70
bounded buffer size=100, 1 producer, 1 consumer 288 250
bounded buffer size=100, 2 producers, 2 consumers 125 42

Fig. 2. Performance on micro-benchmarks

(that is, with plenty of messages already present on on a, a1, a2)12. Conversely,
the three ‘instance a(. . . )’ lines give the performance of calling an asynchronous
method with no parameter, an int parameter, and a string parameter respectively,
in case synchronization fails and the message is queued. The next four ‘instance s ()
consuming and sending’ give the performance of a call to s () with the same chords
as above, except that the consumed asynchronous messages are immediately sent
back, using for instance void s() & async a() { a(); }.
—As one would expect, sending or consuming an empty asynchronous message

has a cost comparable to that of calling a conventional synchronized method.
(The fact the measured cost for sending a parameterless message is shown as
less than that of making a synchronized call illustrates the limits of this sort of
benchmarking on modern architectures.)

—Consuming a message with an int parameter is about 3 times slower than consum-
ing a ‘signal’ with no parameter: this represents the cost of the queue operations,
unboxing, and garbage collection. Sending an integer message is shown as just

12In our experiments, instance methods are a little slower than static methods and a little faster
than virtual ones. The differences are not significant, so we omit those figures.
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under 10 times the cost of a synchronized call. Much of this cost is attributable
to the repeated boxing of the integer so that it may be stored in the queue. The
figures for strings, which do not need boxing, are more reasonable.

—Consuming and sending an empty asynchronous message is in some sense the
Polyphonic C] equivalent of acquiring and releasing an object lock, and is about
2.4 times slower. This is roughly what one would expect, since both the con-
sumption and the sending involve a synchronized call. Consuming and sending
two empty asynchronous messages costs about 4 times the cost of a single syn-
chronized call: although both messages are consumed under one lock, each of the
sends involves acquiring and releasing the lock again.

—Using the Polyphonic C] mutual-exclusion idiom of passing the state in an asyn-
chronous message that is consumed at the start of a chord and then resent at
the end costs 5.7 (for a single integer) or 5.3 (for a string) times as much as a
synchronized call.

The ping pong and bounded buffer benchmarks compare the performance of Poly-
phonic C] programs that perform synchronization between multiple threads. In the
ping pong benchmark, two threads are each associated with a semaphore and re-
peatedly block and wait for one another—alternately signalling the other semaphore
and waiting on their own. The polyphonic version implements the semaphores using

public class PSem : Sem {
public async Signal() & public void Wait() {}

}
whereas the plain C] version uses

public class LSem : Sem {
int i = 0;
public void Signal() { lock(this) { i++; Monitor .Pulse(this); }}
public void Wait() {

lock(this) {
while (i == 0) { Monitor .Wait(this); }
i−−;

}
}

}
On a single processor, the polyphonic version of this test has about half the perfor-
mance of the handwritten, non-polyphonic version. (Using the thread interruption-
based implementation of ThreadQ , the polyphonic version runs nearly 10 times
slower than the non-polyphonic version. On the previous version of .NET, how-
ever, this ratio was nearly inverted as the non-polyphonic version ran 85 times
slower than it does on the current one.) On a dual processor, the two versions of
the program run at roughly the same speed.

In the bounded buffer benchmark, a number of producer threads fill a 100-element
bounded buffer, whilst the same number of consumer threads remove those el-
ements. Producers and consumers block as the buffer becomes full and empty,
respectively. The polyphonic bounded buffer uses
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public class PBB : Buffer {
public void Put(string s) & async free(int c) {

if (c==1) { full (); } else { free (c−1); }
p(s );

}
public string Get() & async p(string s) & async full() {

free (1);
return s;

}
public string Get() & async p(string s) & async free(int c) {

free (c+1);
return s;

}
public PBB(int capacity) { free(capacity); }

}

whereas the plain C] version uses

public class LBB : Buffer {
private Queue q = new Queue();
private int capacity ;
public void Put(string s) {

lock(this) {
while (q .Count == capacity) { Monitor .Wait(this); }
q .Enqueue(s);
Monitor .PulseAll(this);

}
}
public string Get() {

lock(this) {
while (q .Count == 0) { Monitor .Wait(this); }
string s = (string)(q .Dequeue());
Monitor .PulseAll(this);

}
return s;

}
public LBB(int capacity) { this.capacity = capacity ; }

}

On a single-processor machine, the polyphonic solution significantly outperforms
the plain solution, with either two or four threads. On a dual-processor machine, the
two solutions are roughly equivalent with two threads, and the polyphonic solution
is three times faster with four threads. Although these results crucially depend on
the underlying scheduling on threads, we interpret the speedup as a consequence of
selected wakeups in polyphonic code. Of course, C] code optimized by hand would
eventually outperform any Polyphonic C] code.
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6.3 Remarks on Concrete Syntax

There is some redundancy in the concrete syntax of Polyphonic C] as presented
here: the attributes, modifiers and return type information of each method have
to be repeated (consistently) for each chord in which the method appears. One
alternative approach (essentially that of Funnel [Odersky 2000]) would be to allow
synchronous method definitions to have more than one body, each of which is
guarded by a purely asynchronous pattern, and to specify modifiers and attributes
of asynchronous methods in separate declarations. In this style, the reader-writer
lock of Section 4.2 could look something like this:

class ReaderWriter {
async idle (); // Just signatures . Any modifiers or
async s(int); // attributes would occur here too

ReaderWriter() { idle (); }

public void Shared()
when idle() { s(1); }
when s(int n) { s(n+1); }

public void ReleaseShared()
when s(int n) {

if (n == 1) idle(); else s(n−1);
}

public void Exclusive()
when idle() {}

public void ReleaseExclusive() { idle (); }
}

This alternative syntax is more compact in some cases (e.g. in subclasses of
ActiveObject), but is also less flexible: one must group chords by synchronous
methods (rather than, for example, by asynchronous state) and it is awkward to
turn void into async or vice-versa.

6.4 Future Work

Amongst the areas for further work on Polyphonic C] that we think are particularly
interesting are:

Concurrency Types. As suggested in our examples, it is relatively easy to state
and verify invariants in polyphonic classes, often from the shape of the chords and
the visibility of their methods.

Several type systems and other static analyses have been developed in similar
settings to automate the process, and check (or even infer) at compile time some
behavioural properties such as

(1) There is one, or at most one, pending message for this asynchronous method,
or for this set of methods.

(2) Calls to this method are always eventually processed (partial deadlock-freedom).
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The potential benefits are obvious: the compiler can catch more programming
errors, and otherwise produce more efficient code. While these tools are still rather
complex, this is a very active area of research in concurrency [Nielson and Nielson
1994; Igarashi and Kobayashi 2001; Chaki et al. 2002]. Needless to say, it would be
much more difficult to check those properties on a code that directly uses threads
and locks instead of chords.

Optimizations. There are many opportunities for optimizing the implementation
described here. Some of these require proper static analysis, whereas others could
usefully be implemented on the basis of more naive compile-time checks:

—Lock optimization. There are situations when we could safely ‘fuse’ successive
critical sections protected by the same lock, for example when several a (bounded)
series of asynchronous messages are sent to the same object, or when a chord body
immediately sends messages to this.

—Queue optimizations. Polyphonic methods for which it can be determined that
there can be at most one pending call on a particular object could be compiled
using private fields instead of queues. Similarly, the same queue could be shared
by mutually-exclusive methods.

—Thread optimization. Purely asynchronous chords that only perform very brief
terminating computations (such as sending other messages) can often be compiled
to run in the invoking thread, rather than a new one. This is a desirable optimiza-
tion, since it is not uncommon to have a public method that arguably should be
asynchronous and which merely synchronizes with, and then sends, other (typi-
cally private) asynchronous messages. In such cases, one usually prefers not to
pay the cost of thread startup and so defines the method as void rather than
async, although this damages compositionality, for example by preventing one
from instantiating an async delegate with the method. Concrete examples of
this situation are provided by the ReleaseShared and ReleaseExclusive methods
of the ReaderWriter class from Section 4.2—although the potentially-blocking
calls to obtain the lock clearly have to be synchronous, the methods for relin-
quishing it could safely and neatly be made asynchronous were it not for the fact
that they would then be handled by an expensive (and transient) new thread.
Unfortunately, using static analysis to detect that a non-trivial chord body al-
ways terminate ‘quickly’ is rather hard, so it may be that programmer annotation
is a better solution to this problem.

Pattern-Matching. There are situations in which it would be convenient to specify
chords that are only enabled if the values passed as arguments to the methods
satisfy additional constraints. A typical example concerns asynchronous messages
with embedded sequence numbers. If one wishes to ensure that such messages are
processed in sequence, then one currently has to manage a new queue of unprocessed
messages by hand. For example, we may extend ActiveObject of Section 4.4 with
timestamps as follows:

class SequenceProcessor : ActiveObject {
private Hashtable pending = new Hashtable();
private int next = 0;
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public async Message(int stamp, string contents)
& override protected void ProcessMessage() {

if (stamp == next) {
DealWith(contents);
while (pending .ContainsKey(++next)) {

DealWith((string)pending [next ]);
pending .Remove(next);

}
} else {

pending .Add(stamp,contents);
}

}
...

}

With pattern-matching, one could achieve the same effect with

class SequenceProcessor : ActiveObject {

public async Message(int stamp, string contents)
& override protected void ProcessMessage()
& async waitingfor(int stamp) {

DealWith(contents);
waitingfor (stamp++);

}
SequenceProcessor() {

waitingfor (0);
}
...

}

in which the stamp parameters of the two asynchronous calls are required to be
equal for the pattern to match. Even more useful is to allow more general guard
constraints to be added to chords, as in the following example, which matches
buyers for an item with sellers of the same item, provided the bid price is greater
than or equal to the offer price:

override protected void ProcessMessage()
& public async Bid(string bidname, int bidprice, int bidvol , Client bidder)
& public async Offer(string offname, int offprice, int offvol , Client seller )
& ((bidname == offname) && (bidprice >= offprice)) {

// actually do a deal
int dealvolume = min(bidvol , offvol );
int dealprice = avg(bidprice , offprice );
seller . sale (bidname, dealprice , dealvolume);
bidder .purchase(bidname, dealprice , dealvolume);
...

}
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We have implemented an experimental extension of our compiler that will compile
code like that given above. The extended language is elegant and expressive but
would need to be compiled more efficiently to be suitable for general-purpose use:
matches are found by an expensive sequential search through all combinations of
calls to the methods appearing in a chord. Other languages which allow guarded
acceptance of messages, such as SR [Andrews et al. 1988; Andrews and Olsson
1993], have used linear traversal of message queues, but since more than one queue
is involved in a chord we potentially have a more expensive search.13

To make the behaviour of guarded chords predictable and also to facilitate pos-
sible optimizations, it seems reasonable to restrict guards to a simple sublanguage,
such as conjunctions of equalities and inequalities over a few primitive types, rather
than allow them to be arbitrary boolean expressions. Guards should evaluate
quickly and be free of side-effects (reading or writing mutable state, throwing ex-
ceptions, blocking and so on). Efficient incremental matching of conjunctive queries
(or constraints) over primitive scalar types has been previously studied in the con-
texts of databases, constraint logic programming languages and rule-based systems,
though the existing algorithms of which we are aware are not immediately suitable
for use in a setting in which the values contributing to a match are immediately
deleted. This seems a promising area for future work.

Timeouts and Priorities. Similarly, it is tempting to supplement the syntax for
chords with some declarative support for priorities or timeouts and, more generally,
to provide a finer control over dynamic scheduling. We are considering several
designs for timeouts (essentially generalizing the notion of guard discussed above)
and are investigating implementation trade-offs.

6.5 Related Work

There is a large literature on programming abstractions and language constructs
for concurrency. We do not attempt a comprehensive survey—see for instance
[Philippsen 1995] for concurrent object-oriented languages. Instead, we first discuss
works closely related to our design, then we compare it to some popular approaches
in concurrent object-oriented programming.

Banâtre et al. [1988] originally proposed to program concurrent and distributed
systems by multiset transformation of messages in a ‘chemical soup’, using ‘reaction
rules’ defined by pattern matching on pending messages. These reaction rules can
be seen as early, top-level ancestors for ‘chords’ with handwritten, architecture-
dependent implementations.

Our work is directly inspired by the join calculus, a formalism with strong con-
nections to concurrency theory and functional programming [Fournet and Gonthier
1996]. The main purpose of the join calculus is to define a core calculus for asyn-
chronous programming, as opposed to more abstract specification languages for
concurrency. In the same spirit, Pierce and Turner [2000] developed a program-
ming language entirely based on communications on pi calculus channels. The join
calculus has been used to design concurrent, distributed, and mobile extensions of

13It should be noted, however, that a language which only allows guarded acceptance of single
messages but allows those guards to refer to values which can be mutated may have to repeatedly
search whenever the values of those variables change.
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functional programming languages [Le Fessant and Maranget 1998; Conchon and
Le Fessant 1999]. More abstractly, Buscemi and Sassone [2001] precisely related
several standard classes of Petri nets to typed subsets of the join calculus, essen-
tially showing that join patterns (or chords here) can express dynamically-evolving
Petri nets.

The work that is most closely related to Polyphonic C] is that on Join Java
[Itzstein and Kearney 2001; Itzstein and Kearney 2002]. Join Java, which was
initially designed at about the same time as Polyphonic C], takes almost exactly the
same approach to integrating join calculus in a modern object-oriented language.
Apart from minor variations of syntax, the main language differences appear to be
that Join Java takes a more restrictive approach to inheritance than Polyphonic C]

(simply outlawing inheritance from any class that uses join patterns) and that Join
Java also allows the programmer to specify whether pattern matching within a class
should be sequential or non-deterministic. The implementation of Join Java uses a
tree-based pattern-matching library; some further details are given by Itzstein and
Jasiunas [2003].

Going back to Simula [Dahl and Nygaard 1966], concurrent message-passing was
one of the original interpretations of objects. However, mainstream object-oriented
languages tend to focus on lower-level mechanisms such as shared-memory, locks,
and threads.

In order to facilitate the use of threads and locks, most programming languages
provide support for allocating locks on demand (such as synchronized objects),
acquiring and releasing locks consistently (such as synchronized methods), and
selectively acquiring locks (such as monitors or conditional critical regions). In
contrast, we provide general abstractions for synchronizing and atomically consum-
ing several messages sent on distinct methods of the same (dynamically-allocated)
object—typically from independent threads—and we hide the usage of locks in the
implementation.

Many popular synchronization patterns embedded in existing programming lan-
guages can be concisely expressed as chords. For instance, we provided examples
of synchronization barriers, also found in dataflow languages and modelled in Petri
nets (Section 4.3), of active objects, also found in Actor languages [Hewitt 1977]
(Section 4.4), and of staged computations (Section 4.5). Similarly, we can also
encode ADA-style rendezvous [Fournet and Gonthier 2002] and Linda-style coordi-
nation primitives using chords.

Several languages for concurrency provide expressive guards that can be used
to control the acquisition of exclusive resources and test local conditions while en-
tering critical regions [Agha et al. 1993; Andrews and Olsson 1993]. Polyphonic
C] explores a different approach, and emphasizes the synchronization of multiple
messages. However, programming synchronization in terms of boolean conditions
is often natural—indeed, we are experimenting with such extensions. Using guards
instead of chords, one could in principle multiplex all calls to polyphonic methods
in a given object to methods whose guards express equivalent synchronization con-
ditions. However, this would involve complicated guards, difficult to write correctly
and compile efficiently.

Other languages provide generic support for creating and composing message
handlers. For example, [Reppy 1992] provides ML libraries that support the com-
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positional, higher order definition of synchronous event channels. Although it is
possible to program event filters similar to chords, their implementation is also less
specialized and less efficient, and would typically involve an explicit representation
of message queues.

7. CONCLUSIONS

Asynchronous concurrent programming is becoming more important and wide-
spread but remains hard. We have designed and implemented a join calculus-based
extension of C] that is simple, expressive, and efficient. In our experience, writing
correct concurrent programs is considerably less difficult in Polyphonic C] than in
ordinary C] (though we would certainly not go so far as to claim that it is easy!).

The integration of the join calculus constructs with objects and the existing .NET
mechanisms for concurrency is not entirely straightforward—our implementation is
constrained by the underlying threads-and-locks model. Some uses of polyphony
with existing libraries also require a little ‘impedance matching’. Nevertheless, the
new constructs work very well in practice.
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